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 2 

Abstract 15 

Mind-blanking (MB) is the inability to report mental events during unconstraint thinking. Previous work 16 

shows that MB is linked to decreased levels of cortical arousal, indicating dominance of cerebral 17 

mechanisms when reporting mental states. What remains inconclusive is whether MB can also ensue from 18 

autonomic arousal manipulations, pointing to the implication of peripheral physiology to mental events. 19 

Using experience-sampling, neural, and physiological measurements in 26 participants, we first show that 20 

MB was reported more frequently in low arousal conditions, elicited by sleep deprivation. Also, there was 21 

partial evidence for a higher number of MB reports in high arousal conditions, elicited by intense physical 22 

exercise. Transition probabilities revealed that, after sleep deprivation, mind-wandering was more likely to 23 

be followed by MB and less likely to be followed by more mind-wandering reports. Using classification 24 

schemes, we show higher performance of a balanced random forest classifier trained on both neural and 25 

physiological markers in comparison to performance when solely neural or physiological were used. 26 

Collectively, we show that both cortical and autonomic arousal affect MB report occurrences. Our results 27 

establish that MB is supported by combined brain-body configurations, and, by linking mental and 28 

physiological states they pave the way for novel, embodied accounts of spontaneous thinking.   29 

Keywords: mind-blanking, experience-sampling, brain-body interactions, machine learning, spontaneous 30 

thinking 31 
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 3 

Introduction  38 

During ongoing mentation, our mind constantly shifts across different mental states. These mental 39 

states typically bear some content (“what we think about”) and indicate a relationship towards that content 40 

(i.e., perceiving, fearing, hoping, remembering)1. As we move through the environment, our thoughts 41 

fluctuate between the external and internal milieu2,3, resulting in a fluid stream of consciousness 4. External 42 

content is tightly coupled to the processing of environmental stimuli and task-demanding conditions. 43 

Internal content is more associated with self-referential processing and internal dialogue, widely known as 44 

Mind-Wandering (MW)4. Inclusive as this external-internal dipole may seem, it does not capture the full 45 

scope of the “aboutness” of mental content. Recent work has highlighted another mental state, where people 46 

report that they are “thinking of nothing” or “their mind just went away”, a phenomenological experience 47 

termed mind-blanking (MB) 5. As MB is relatively new in the landscape of ongoing cognition, the extent 48 

of MB episodes in daily and clinical settings remains widely uncharacterized. For example, a recent study 49 

found that MB might be miscategorized as MW in ADHD symptom evaluation6. Therefore, the experience 50 

of MB occurrences poses a challenge to our everyday functioning and our understanding of the continuous 51 

nature of the stream of consciousness. 52 

Currently, there is no clear answer as to how MB reports are generated. So far, behavioral studies 53 

show that MB can arise after conscious mental effort to empty our mind 7–9, is usually unintentional 5,10,11 54 

and gets reported less frequently during unconstrainted thinking compared to MW and sensory/perceptual 55 

mental states 5,11–13. At the brain level, the inability to report mental events after the prompt to “empty the 56 

mind” has been associated with activation of the anterior cingulate/medial prefrontal cortex, and 57 

deactivation of inferior frontal gyrus/Broca's areas and the hippocampus, which the authors interpreted as 58 

the inability to verbalize internal mentation (inner speech) 8. Recently, we found that the functional 59 

connectome of fMRI volumes around MB reports was similar to a unique brain pattern of overall positive 60 

inter-areal connectivity12 which was also characterized by increased amplitude of fMRI global signal (i.e. 61 

averaged connectivity across all grey matter voxels), an implicit indicator of low arousal 14–16. For example, 62 

the amplitude of the global signal correlated negatively with EEG vigilance markers (alpha, beta 63 
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oscillations), while increases in EEG vigilance due to caffeine ingestion were associated with reduced 64 

global signal amplitude14. Our findings corroborate recent EEG-related evidence supporting the possibility 65 

of “local sleeps” during MB reportability 10,17. “Local sleeps” refer to the scalp distribution of EEG 66 

potentials during wakefulness, in the form of high intensity, slow oscillatory activity in the theta/delta band, 67 

which could differentiate between MB and MW, with more fronto-central potentials tied to MW and 68 

parietal to MB 10. Together, the presence of slow waves preceding MB reports and the high fMRI global 69 

signal hint toward the role of arousal in mental content reportability. Starting from this line of evidence, we 70 

generally infer that arousal fluctuations drive MB reportability.  71 

Arousal is a multidimensional term generally referring to the behavioral state of being awake and 72 

alert, supporting wakefulness, responsiveness to environmental stimuli, and attentiveness 18,19. 73 

Anatomically, arousal is supported by the ascending arousal system, the autonomic nervous system, and 74 

the endocrine system 18. Early on, Lacey viewed arousal in terms of behavioral arousal (indicated by a 75 

responding organism, like restlessness and crying), cortical arousal (evidenced by desynchronized fast 76 

oscillatory activity), and autonomic arousal (indicated by changes in bodily functions) 20. Cortical arousal 77 

is self-generated through the reticulate formation and propagated through dorsal thalamic and ventral 78 

subthalamic pathways21, and can be indexed by the alpha, theta, and delta EEG bands during wakefulness 79 

22,23. Lower levels of cortical arousal in the form of slow waves have been associated with an increased 80 

number of missed stimuli in behavioral tasks 11,23 and decreased thought intensity 24. Also, lower levels of 81 

arousal indexed by pupil size have been correlated with a higher probability of MB reports in sustained 82 

attention tasks 11,25,26. 83 

Much as it may have been done in terms of cortical arousal, the present study will focus on how 84 

autonomic arousal influences MB reportability, which is widely understudied. Our choice is justified by 85 

the theoretical assumption that mental function is tightly linked to peripheral body functions, explicitly 86 

expressed by the embodied cognition stance27. Briefly, embodiment holds that cognition is bound to a living 87 

body interacting with a dynamic environment and conceptualizes cognition as the result of brain-body 88 

interactions during dynamic contexts. From that perspective, modifications in autonomic arousal are 89 
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expected to lead to differential reportability of mental states. Autonomic arousal links the body and the 90 

brain through spinal-cord projections from peripheral organs to the brainstem and can be indexed by 91 

physiological signals reflecting sympathetic/parasympathetic balance, such as heart rate, galvanic skin 92 

response, and fluctuations in pupil size 28. Converging evidence suggests that afferent physiological signals 93 

and biological rhythms, such as the cardiac or the respiratory phase, play a modulatory role in conscious 94 

perception 29,30, metacognition 31, affective salience of information32, and perceptual confidence of sensory 95 

sampling 33, both during task performance and in-silico simulations 34. Alterations in autonomic arousal 96 

were also found to influence brain activity in that fMRI volumes characterized by lower arousal levels 97 

(indexed by decreased pupil size), showed reduced in-between network integration and inter-subject 98 

variability in comparison to scans characterized by high arousal levels (indexed by increased pupil size) 35. 99 

Taken together, we here advocate for a direct link between autonomic arousal and content 100 

reportability. Firstly, we examined how MB report distribution shifted across different autonomic arousal 101 

conditions. To this end, we used experience-sampling under differently elicited arousal conditions. 102 

Experience-sampling is a though-sampling methodology, where people are probed to report their mental 103 

state at random intervals, probed by an external cue4. We employed this task at three distinct arousal 104 

conditions: Baseline, High (post workout), and Low (post sleep deprivation). Our operational hypothesis 105 

was that optimal levels of autonomic arousal (fixed variable) are necessary for optimal mental state 106 

reportability (dependent variable). We expected that deviations from optimal levels, such as after sleep 107 

deprivation or intense physical exercise, would alter our stream of thought, therefore promoting more 108 

frequent MB reports (Supplementary Table S1 for the full scope of our hypothesis). Secondly, we opted to 109 

identify specific brain-body interaction patterns that would promote MB reportability. To this end, we 110 

utilized multimodal neurophysiological recordings and a machine learning approach to decode MB reports 111 

from arousal measurements  112 

 113 

 114 

 115 
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Methods 116 

Ethics Information 117 

The experimental procedure has been approved by the CHU Liège local ethics committee and 118 

conforms with the Declaration of Helsinki and the European General Data Protection Regulation (GDPR). 119 

Before the onset of the protocol, participants provided informed consent for their participation in the study. 120 

Participants also received monetary compensation for their participation in the study. 121 

 122 

Design 123 

The study included healthy volunteers recruited after campus poster advertisements, intranet 124 

electronic invitations, and through the ULiège “petites annonces” e-campus platform. Inclusion criteria 125 

were: a) right-handedness, b) age>18 years, c) minimal exercise background (<2h per week), d) good 126 

subjective sleep quality (Pittsburgh Sleep Quality Index [PSQI] ≤ 5 36), e) habitual sleep duration of 8 ± 1 127 

hours. Exclusion criteria were: a) history of developmental, psychiatric, or neurological illness resulting in 128 

documented functional disability, b) severe anomalies in pupil shape or inability to open both eyes 129 

preventing pupil measurement 37, c) analgesic medication which may affect physiological arousal, d) 130 

history of psychiatric illness pertaining to anxiety disorders or scores < 9 in the General Anxiety Disorder-131 

7 (GAD-7 scale) 38 as anxious participants experience biased perceptions of their bodily states 39, e) extreme 132 

chronotypes, f) shift work or traveling over time zones in the past 3 months. 133 

Experience-sampling was utilized in a within-participants repeated-measures design. During the 134 

experience-sampling session, participants laid restfully and were directed to let their minds wander, without 135 

any specific instructions towards internal (daydreaming, memories, prospective events) or external thoughts 136 

(body sensations, sensory stimuli in their immediate environment). Auditory probes (total n=40, 500Hz 137 

simple tones) invited participants to report what they were thinking at the moment just preceding the probe. 138 

The inter-probe interval was sampled from a uniform distribution between 110 and 120 seconds. Report 139 

times were monitored online to examine if participants missed the probe or fell asleep due to our 140 

experimental manipulation. In case of a report time > 6s, participants were reminded to report their mental 141 
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 7 

state as soon as they heard the probe and indicate they are awake via button press. In case of 142 

unresponsiveness, the experimenters manually awakened the participant. Depending on the probes’ trigger 143 

times and participants' reaction times, a recording lasted on average 70-90 minutes. We chose to present 40 144 

probes (overall length approximately 1h and 15min) to avoid fatigue/drowsiness and the possibility of 145 

participants returning to baseline arousal after the experimental manipulations. Also, the relatively large 146 

experience-sampling interval, compared to previous studies, was used to record enough samples to 147 

accurately estimate physiological markers from slow oscillatory signals, such as the heart-rate variability. 148 

Upon the probe, participants had to choose among four distinct choices describing their mental state: mind-149 

blanking (MB), mind-wandering (MW), perceptual sensations (SENS), or sleep (SLEEP). These response 150 

options were chosen to minimize assumptions about what the actual partitions of mental states might be. 151 

For example, debates about what can be classified as MW40 refer to whether MW is a coherent cluster of 152 

events 1,41 and how it is separated from awareness and processing of environmental stimuli 40,42. We believe 153 

that our divisions respect the literature on internal/external thinking networks 3,43,44 while introducing 154 

minimum assumptions as to the actual content of each state. The introduction of the sleep option facilitated 155 

the identification of trials where participants fell asleep due to the experimental manipulation. Participants 156 

indicated their responses via button press from a response keyboard placed under their dominant hand. We 157 

repeated the experience-sampling task on three distinct days, over the span of two weeks under three 158 

conditions: a) experience-sampling under spontaneous thinking without arousal modulations (Baseline), b) 159 

experience-sampling elicited through short, high-intensity interval training (High Arousal), c) experience-160 

sampling after total sleep deprivation (Low Arousal) (Fig. 1). The goal of both arousal manipulations was 161 

to promote distinct changes in physiological and cortical markers associated with arousal mechanisms 162 

(Supplementary Table S2). Monitoring of arousal changes was done with physiological and cortical 163 

measurements. In case when participants did not show distinct cortical and physiological changes after our 164 

arousal manipulations, they were excluded from further analysis. Effect monitoring was done by examining 165 

the heart rate in High Arousal as well as the EEG spectra in both High and Low Arousal. 166 
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In High Arousal, participants first performed high-intensity interval activity in the form of cycling. They 167 

started with a warm-up training session of 3 minutes to avoid potential muscle trauma and then cycled for 168 

45 seconds as fast as possible. A resting period of 15 seconds followed. A total number of 10 workout 169 

cycles was administered. The choice of this timing protocol rested on previous studies indicating that 170 

similar exercise routines produce distinct and sustained sympathetic activity 45,46 and cortical excitation 46, 171 

which can last between 30-90 minutes after exercise cessation47. 172 

In Low Arousal, participants performed the experience-sampling task after one night of total sleep 173 

deprivation. Sleep deprivation leads to an arousal state that is behaviourally distinct from typical 174 

wakefulness48,49, promotes specific neuronal signatures ("local sleeps” in the delta band)11, and has a 175 

distinct physiological expression. Critically, we do not wish to claim that sleep states are identical to “local 176 

sleeps”, nor do we suggest an overlap between low arousal due to sleep deprivation and unconsciousness 177 

during sleep. To acquire estimates of their mean sleep schedule, participants wore an actimeter for one 178 

week before the total sleep deprivation protocol (Supplementary Fig. S1; available for 24/26 subjects due 179 

to data corruption). The total sleep deprivation protocol was as follows: A week prior to sleep deprivation, 180 

participants were provided with an actimetry device, to track wake-sleep schedule, and were instructed to 181 

follow a consistent 8-hour sleep schedule. On the deprivation day, participants arrived at the lab one hour 182 

before their normal sleep time to extract their actimetry baseline data, estimate the optimal sleep deprivation 183 

window and to provide baseline vigilance, drowsiness, and sleepiness measurements. After a total sleep 184 

deprivation of 26h (16h of typical wakefulness, 8h of sleep deprivation, and a 2h post-sleep deprivation 185 

period) participants began the post sleep deprivation, experience-sampling session. As an example, a 186 

participant who typically slept at 12am would arrive at the lab at 11am, would start sleep deprivation at 187 

12am, finish sleep deprivation at 8am, and perform the experience-sampling task at 10am. Should slow-188 

wave activity during wakefulness follow the same circadian modulation it follows during sleep 50, a 189 

potential confound that could have lowered the power of our analysis is the time-window of the experience-190 

sampling task. However, as suggested in 50, the relative time-window we have selected did not fall under a 191 

critical point of large reductions in the amplitude of the slow-waves. The 2-hour, post-deprivation waiting 192 
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window allowed us to match the time of the experience-sampling across the 3 conditions, avoiding potential 193 

circadian confounds on experience-sampling, as we could easier match sleep-wake cycles and the time of 194 

the experience-sampling within each participant. We have chosen this sleep manipulation as similar 195 

manipulations have been previously used to examine the effects of sleep pressure 51,52, and have been shown 196 

to elicit distinct low-arousal cortical profiles 53,54, as well as changes in the sympathetic/parasympathetic 197 

balance 55. 198 

Sleep deprivation was controlled with regard to light influence (illuminance = 15 lux during 199 

wakefulness and 0 lux during sleep), caloric intake (standardized meals every 4 h), and body posture (semi-200 

recumbent position during scheduled wakefulness) to minimize potential masking effects on the sleep-wake 201 

regulatory system. Participants were not allowed to stand up except for regularly scheduled bathroom visits 202 

and will not have any indications of the time of the day. The experimenters continually monitored 203 

participants to keep them awake. In case of a sleep event, the experimenters first tried to awaken the 204 

participant through an intercom, and in case of failure, they  manually awakened the participant. We also 205 

monitored for sleep lapses through the experience-sampling tasks. In case participants close their eyes for 206 

a time-period < 30 seconds, they were probed by a tone to wake up. If they did not, the experimenter in the 207 

room would awaken the participant. 208 

A one-week interval took place between sleep deprivation and further recordings in order to minimize 209 

potential carry-over effects of sleep deprivation on our follow-up conditions. In that way, the participants’ 210 

sleep schedules will also reset to their respective normal cycles. The order of the three arousal conditions 211 

was randomized. As a post-registration note, we randomized only the order of sleep deprivation and post-212 

exercise, to add a training session before the baseline that allowed participants to get acquainted with the 213 

protocol, without external task impositions that might confound protocol understanding. 214 

 215 
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 216 
Figure 1. Experimental protocol. Top The experience-sampling task invited participants to sit idly and relax, letting their 217 

minds wander. Every 110-120s, a 500 Hz auditory cue probed participants to report what they were thinking at that 218 

moment. Participants were able to choose from 4 presented responses: Mind-Blanking (MB), Mind-wandering (MW), 219 

Perceptual Sensations (SENS), and Sleep (SLEEP). Bottom Repeated-measures autonomic arousal recordings. To test how 220 

spontaneous thoughts unfold over time across different arousal conditions, we first invited people for baseline assessments 221 

on Day 1 (Baseline condition). On Day 2 participants underwent a 15-minute high-intensity exercise routine (High Arousal 222 

condition) and on Day 3 they participated in a total sleep deprivation protocol (Low Arousal condition). The High and Low 223 

Arousal conditions were counter-balanced across participants. Multimodal physiological recordings were used to monitor 224 

arousal manipulations. The dataset was constituted of EEG, pupillometry, ECG, EDA, and respiratory data; the arrows 225 

indicate the hypothesized directions of the derived metrics.  226 

Sampling Plan 227 

We used a Neyman-Pearson frequentist approach to balance false-negative and false-positive rates by 228 

setting power to 95% and establishing a Type I error rate (alpha) of 5%. To estimate the desired sample 229 

size, a simulation approach was utilized: data were generated consistent with a latent binomial regression 230 

model, in which one categorical predictor with 3 levels (Base, High, Low) predicted a binary outcome Y 231 

(presence of MB or not). An original probability pMB = .1 was specified as the underlying generative 232 

probability in the baseline model based on previous research 5,11,12. We allowed the random intercepts and 233 

slopes to freely vary around a normal distribution with a standard deviation of s.d. = .1. Given that no 234 

previous study to our knowledge has provided evidence for the distribution of the effect sizes of arousal on 235 
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mental reports, and to account for possible reverse effects (such as decreased MB report probability), we 236 

reasoned that a meaningful yet conservative effect for the Low Arousal condition would be an odds ratio of 237 

1.6, and an odds ratio of 0.55 for the High Arousal condition. Since our initial hypothesized distribution is 238 

expected to yield ~3-5 MB reports per session 11,12, this effectively translates to a small effect size of interest 239 

of at least 3 more reports across conditions.  240 

Considering these parameters, for each population sample, ranging from 5 to 50 participants, we 241 

sampled 500 datasets, and fit a binomial model with the participant ID as random factors, keeping the 242 

regression coefficients for the levels of the predictor constant. Based on the simulation analysis, using a 243 

false positive threshold of .05, we calculated a sample size of 26 participants to achieve a power of .95 244 

(Supplementary Fig. S2). 245 

Data Analysis Behavioral data 246 

Statistical analysis was performed using generalized linear mixed-effects models. To address whether 247 

arousal affects MB occurrence, we used a binomial, linear model with arousal as a categorical independent 248 

variable, and the proportion of mental reports across a sampling period (40 trials) as our dependent variable. 249 

Data were binary coded (presence or not of MB report) and fit into the model using a “logit” link. Given 250 

that the underlying distribution was unknown, a Bernoulli generative process minimized the assumptions 251 

about the model. In order to examine whether the multinomial distribution of mental reports itself changes 252 

across different arousal conditions, we used the generalized estimating equations (GEE) approach, an 253 

extension of generalized mixed-effects models that can account for correlated, repeated-measures count 254 

data from multinomial distributions56,57. Mental reports were aggregated as counts across participants and 255 

conditions, and we examined shifts in report time distribution using the three experimental arousal 256 

conditions as predictors. We considered as report time the interval between the response probe and the 257 

participant’s report. To examine report times as a function of mental states, we specified a generalized 258 

linear mixed effect model with mental reports and arousal conditions as categorical variables and used a 259 

gamma distribution with an “inverse” link function. As reaction-times are usually an indicator of arousal 260 

effects on the task-performance, an effect of arousal condition as a covariate might be informative about a 261 
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potential shift of the overall slower mental report times distribution and about the arousal condition of the 262 

subject itself. The choice of the distribution and the link minimizes assumptions about the model, respects 263 

the positive, skewed distribution of reaction times, and was previously found to provide a better fit 264 

compared to other link functions58. To examine whether arousal shifts the dynamics of mental reports, i.e. 265 

one state might be more likely to be followed by MB in one of the arousal states compared to Baseline, we 266 

estimated dynamical transition probabilities across different mental states using Markov models. The 267 

transition probabilities for MB were then compared using a linear model with an identity link, with the 268 

transition probabilities as the dependent variable and the arousal condition as the categorical, independent 269 

variable. 270 

All specified models were compared against null models using likelihood ratio tests. We introduced the 271 

participant’s ID as a priori random factor, i.e., we allowed the model's intercept to vary. In case of multiple 272 

models compared, p-values were corrected using Bonferroni correction. In case of significance of a fixed 273 

predictor, we used corrected pairwise comparisons to examine the marginal means of the predictors.  274 

 275 

Brain-based measures 276 

Physiological and cortical timeseries were segmented based on the response probe time. We considered 277 

the 110-second period before the response probe as a meaningful analysis epoch, representing the neuronal 278 

and physiological dynamics that result in a specific mental state. This period was used in subsequent 279 

analysis.  280 

We recorded EEG with an EasyCap (64 active electrodes) connected to a BrainAmp system (Brain 281 

Products GmbH) using the 10-20 standard configuration. A ground electrode was placed frontally (Fpz in 282 

the 10–20 system). Online, we referenced the electrodes to a frontal electrode. Impedance was kept below 283 

20 kΩ. As a post-registration note, we originally registered to keep impedance below 10 kΩ. However, we 284 

leveraged the strength of active electrodes and used the research standard of 20 kΩ. To minimize 285 

impedance, we used conductive gel. Data were sampled at a sampling frequency of 500 Hz. Preprocessing 286 

included band-pass filtering ( >1Hz, <45Hz), notch filtering (50Hz), and epoch definition (t_start = 110s 287 
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preceding the probe, t_max= probe). By visual inspection, we checked and removed noisy electrodes and 288 

epochs. In case of discarding more than 50% of the total epochs for a single participant, that participant 289 

was discarded from future analysis. We then used ICA decomposition to remove non-neuronal components 290 

such as blinks, heartbeats, muscle artifacts, etc. Finally, channels removed due to rejection were 291 

interpolated using neighbouring channels, and all channels were re-referenced to the average. 292 

Based on EEG recordings, we estimated three classes of measures: 1) measures estimating spectral 293 

power - raw and normalized power spectra, Median Spectral Frequency (MSF), spectral edge 90 (SEF90), 294 

and spectral edge 95 (SEF95), 2) measures estimating information content – spectral entropy, Kolmogorov-295 

Chaitin complexity (K) and Permutation Entropy, and 3) measures estimating functional connectivity – 296 

Symbolic Mutual Information and weighted Symbolic Mutual Information. Power spectrum density (PSD) 297 

was computed over the delta (1-4 Hz), theta (4-8Hz) alpha (8-12Hz), beta (12-30Hz), gamma (30-45Hz) 298 

spectral bands, using the Welch spectrum approximation (segments = 512 ms, overlap = 400ms). Segments 299 

rejection were windowed using a Hanning window and zero-padded to 4096 samples. Kolmogorov-Chaitin 300 

complexity was computed by compressing a discretization of the signal using a histogram approach with 301 

32 bins. Permutation Entropy was obtained by computing the entropy of a symbolic transformation of the 302 

signals, within the alpha, delta, and theta bands. SMI and wSMI were then computed from the same 303 

symbolic transformation, but data was first filtered using Current Source Density estimates to diminish the 304 

volume conduction. SMI and wSMI were computed in theta, delta, and alpha bands 59. From the available 305 

connectivity metrics, we chose to use only wSMI as it is the only one that can detect purely nonlinear 306 

interaction dynamics and can be computed for each epoch 60. 307 

 308 

Physiological measures  309 

Electrocardiogram (ECG) data were acquired using the BIOPAC MP160 system (BIOPAC SYSTEMS 310 

inc.), amplified through the BIOPAC ECG100C amplifier. The data were sampled at a sampling frequency 311 

of 2kHz and recorded using the AcqKnowledge v4.4 software. ECG disposable adhesive skin electrodes 312 

were used in a bipolar arrangement of two electrodes and ground. The positive electrode was at the non-313 
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dominant wrist of the participant and the negative on the contralateral ankle. The ground electrode was 314 

placed on the ipsilateral ankle.  315 

ECG data were filtered with a notch filter (.05Hz) to remove baseline wander artifacts. A Butterworth 316 

high-pass filter was applied (<.5Hz) to attenuate linear drifts and physiological artifacts. Powerline 317 

interference was attenuated with a notch filter (50Hz). Finally, the data were smoothed with a 3rd-order 318 

polynomial Savitzky-Golay filter. Peaks were detected using the native Neurokit2 algorithm. Finally, data 319 

were epoched based on the partition scheme in the EEG preprocessing section. 320 

ECG metrics were grouped into three domains: time, spectral power, and information content. Time-321 

domain metrics were a) the Heart Rate (HR), b) the standard deviation of the RR-intervals (SDNN), and c) 322 

the Root Mean Square of Successive Differences (RMSSD). Spectral power features were a) Low 323 

Frequency of the Heart Rate Variability (LF-HRV), b) High Frequency of the Heart Rate Variability (HF-324 

HRV) and c) the LF/HF HRV ratio. Information content metrics were a) Approximate Entropy (AE), b) 325 

Sample Entropy (SE), c) Multiscale Entropy (MSE). Initially, the native Neurokit2 algorithm to extract the 326 

peaks of the QRS complex. RR intervals were estimated as the sequential difference of the peak times. We 327 

estimated the time domain features based on the RR timeseries. For the spectral power metrics, the RR was 328 

evenly resampled at 4 Hz. Power spectra were computed over the LF-HRV (0.04–0.15 Hz) and the HF-329 

HRV (0.15-0.4) bands. The power spectrums were estimated using the Welch procedure. 330 

 331 

Respiration. Respiratory data was acquired using a respiratory belt and amplified through the BIOPAC 332 

amplifier. Data were sampled at a sampling frequency of 2kHz and recorded using the AcqKnowledge v4.4 333 

software.  334 

Respiratory metrics were grouped in the time and information content domain. Time-domain metrics 335 

were a) respiration rate and b) respiration rate variability. Information content was estimated based on 336 

multiscale entropy. 337 

 338 
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Pupillometry. Eye movements and pupil size in both eyes were recorded using oculometric glasses 339 

(Phasya recording system) with a sampling frequency of 120 Hz. The eye tracker was calibrated at the start 340 

of each recording. Data was epoched based on the epoching scheme in the EEG preprocessing section. . 341 

We identified 100ms blink periods around blinks and removed the whole segment, as pre- and post-blink 342 

periods can introduce pupil dilation artifacts while the eye is recovering to its standard size. We interpolated 343 

segments using 3rd-degree cubic interpolation. Dilation speed outliers were calculated by estimating the 344 

median absolute deviation (MAD) of each value. Samples exceeding the deviation threshold were removed. 345 

Pupil dilation were smoothed using a moving average filter and baseline corrected with a 100ms period 2s 346 

after the probe. 347 

Pupil metrics were grouped in the same three domains: time, spectral power, and information content. 348 

Time-domain metrics were: 1) Blink rate, 2) Pupil size, 3) Pupil size variability. Spectral power metrics 349 

were: 1) Low Frequency Pupil Component (LFC), 2) High Frequency Pupil Component (HFC). The 350 

information content metric is MSE. The power spectra were estimated using the Welch procedure. As a 351 

post-registration note, we encountered issues extracting pupil metrics at the Low Arousal condition, as 352 

participants tended to have their eyes closed or partially closed for most of the trials. As our device was not 353 

sensitive to capture dilation in this setting, we additionally estimated a) Blink Rate, b) Blink Duration, c) 354 

Blink Rate Variability, d) Mean Eye Openness, e) Eye Openness Variability, f) Percentage of 70% Eye 355 

Closure and g) Percentage of 80% Eye Closure. As stated below, our registered plan was to reliably estimate 356 

all time, frequency and complexity metrics that can be of use to our classifiers. Therefore, while we do not 357 

deviate from our original registered protocol, it is of note that these features could not be estimated reliably. 358 

 359 

Electrodermal activity (EDA) data was acquired through skin electrodes on the index and middle finger 360 

and amplified through the BIOPAC amplifier. Data was sampled at a sampling frequency of 2k Hz and 361 

recorded using the AcqKnowledge v4.4 software. All EDA metrics originated from the time domain: a) 362 

Galvanic Skin Response (GSR), b) tonic EDA, and c) phasic EDA. Extraction of the phasic and tonic 363 
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components of the EDA was conducted with deconvolution of the EDA signal with a biologically plausibly 364 

impulse response function with initially fixed parameters that are iteratively optimized per participant 61. 365 

 366 

Pattern recognition 367 

To examine the physiological counterpart of the behavioral shifts in MB reports, we employed a 368 

supervised decoding approach. Using the multimodal neurophysiological measurements during the three 369 

experience-sampling sessions, we trained multiple classifiers to discriminate across MB, MW and SENS 370 

reports, to identify whether MB is supported by a unique brain-body interaction pattern. This approach 371 

allowed us to extract meaningful brain-body interactions from the proposed arousal metrics without being 372 

conservative about the nature of the multiple comparisons between the various body metrics.  373 

As features, we opted to collect meaningful data in the time, frequency, information, and connectivity 374 

domain, unless such measurements could not be reliably estimated within our selected time window. The 375 

goal of the multiple selected metrics was to capture potential diverse spatiotemporal relationships (low-376 

high frequency interactions, phase-amplitude interactions) that might extend across different recording 377 

modalities. Overall, we computed 57 features. 378 

 As targets, we used the participants’ mental states (MB, MW and SENS). Since this creates a multiclass 379 

classification problem, we will focus on the binary classification of MB vs other reports. We expect to 380 

acquire 40 samples per participant and condition (i.e. baseline and arousal states), giving a total of 1040 381 

(26*40) samples per condition. We expected that 5% of the samples correspond to the target report (MB), 382 

yielding an imbalanced problem with only 52 target samples per condition. 383 

As learning algorithms, we tested parametric and non-parametric models, such as Support Vector 384 

Machines, Random Forests, and Extremely Randomized Trees. Support vector machines are a classification 385 

technique that aims to separate labeled inputs by creating a hyperplane that maximizes the distance of their 386 

features. Given a set of n-labeled inputs, SVM provides a hyperplane in an n-dimensional space that 387 

maximally separates the differently labeled groups. A random forest classifier is a meta-estimator. Various 388 

classifiers (“decision trees”) are trained in different parts of the input dataset, and each classifier uses only 389 
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that part of the dataset to predict the label of the input. Then, the predictions of each classifier are pooled 390 

(“bagged”) together, and an optimal decision is chosen based on the label with the most predictions 391 

(“votes”). Finally, an extremely randomized tree classifier is a meta-estimator that employs a similar voting 392 

scheme. However, in the case of extremely randomized trees, trees are trained on all the features and the 393 

cutoff point of the trees (how the various metric nodes are arranged to reach a decision) is randomized. 394 

Since our problem is highly imbalanced, we also tested outlier detection algorithms (i.e. one-class 395 

classifiers), aiming to isolate MB from the other reports by considering MB as either an inlier or outlier. 396 

We then tested the one-class counterparts of the SVM (One-class SVM) and Random Forests (i.e. isolation 397 

forests) algorithms. 398 

 For model selection and performance estimation, we employed two different cross-validation 399 

approaches. First, we used a 5-fold stratified cross-validation scheme trained with all the samples. This 400 

provided us with performance estimates of classifiers aimed at obtaining patterns of brain and body function 401 

that can predict the report of MB in known participants. As a second approach, we used a 5-fold group 402 

stratified cross-validation scheme, using participants as groups. In this scenario, each participant was either 403 

on the train or the test set. Thus, it aimed at learning general patterns of brain and body function that could 404 

predict the report of MB in unseen participants. In other terms, the first approach aimed at learning patterns 405 

that could discriminate MB from other reports while accounting for each participant’s variance, while the 406 

second strengthened the claim, aiming to learn general patterns that could be found in unseen participants. 407 

 As performance metrics, we report a) recall, b) precision, c) F1-score, d) area under the ROC curve 408 

(AUC), and e) balanced accuracy. Recall is the ratio of how often an item was classified correctly as a 409 

positive (True Positive / True Positive + False Negative). Similarly, precision is the ratio of actual correct 410 

positive classifications among positive classifications (True Positive / True Positive + Positive). F1-score 411 

is the harmonic mean of precision and recall. The AUC curve is another evaluation metric that summarizes 412 

how well the classifier predicts a class based on different thresholds of true positive and false positive ratios. 413 

Finally, balanced accuracy is an evaluation metric suitable for imbalanced datasets, where one class appears 414 

at significantly different frequencies than the others. Balanced accuracy is useful because it is estimated as 415 
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the average of specificity and sensitivity, simultaneously controlling for very high precision due to 416 

classifying nothing as the infrequent class and very high recall due to classifying everything as the 417 

infrequent class. 418 

We selected each model’s hyperparameters using nested cross-validation (same scheme as the outer 419 

cross-validation), using the F1-score as our optimization metric.  420 

To evaluate the variance in the classifier performance and compare it to chance level, we performed 421 

repeated cross-validation (10 times), while training also a “dummy” classifier to obtain the empirical chance 422 

level of the training samples distribution. This type of classifier generates predictions based on the 423 

distribution of training samples for each class without accounting for the features. 424 

The decoding analysis was implemented in Python using Julearn62 and Scikit-Learn63. Metrics were 425 

estimated from existing Python libraries: MNE64, NICE65 , Neurokit66, and custom in-lab Python functions. 426 

 427 

Results 428 

Participants 429 

To achieve a power of .95 at an alpha threshold of .05, we acquired 3 sessions of 40 trials per session 430 

from 26 participants (mean age = 26.38, std = 4.53, min=20, max=40; female=11). In case participants 431 

could not adhere to the strict 3-week protocol (30% total sessions), they were rescheduled to a later date 432 

that respected their sleep schedules to avoid time windows with potential extreme slow-wave activity50. 433 

Due to data corruption, one participant had 30 trials in one of the three sessions, and one participant had 33 434 

trials in one of the three sessions. The remaining two sessions were completed for both participants.  435 

 436 

Behavioral Data 437 

Occurrences of mental state reports alter across arousal conditions. 438 

We found a main effect for mental states, with MB being reported at significantly lower rates (Mean 439 

proportions ±SD: MW=.56, ±.21, SENS=.2±.14, MB=.12±.13; Kruskal H=124.07, p= 1.2e-27, eta2= .53) 440 

compared to MW (Dunn’s test=-10.75, pFDR = 1.8e-26) and to SENS (Dunn’s test=-2.85, pFDR= 4.3e-03). 441 
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Additionally, MW was reported significantly more frequently compared to SENS (Dunn’s test=7.9, pFDR= 442 

4.3e-15; Fig. 2). As the study was focused on wakeful mental states, “SLEEP” reports were not included in 443 

the analysis (Mean proportions ±SD: Baseline = .03±.05, High Arousal = .05±.07, Low Arousal = .26±.21, 444 

Total = .1±.17). 445 

 446 

Figure 2. Mind-blanking (MB) was reported significantly less frequently compared to mind-wandering (MW) and 447 

Sensations (SENS) across all arousal conditions, validating what is generally reported in the literature. Density kernels show 448 

overall data dispersion and clustering trends. Point plots are individual subject estimates. Boxplots show medians and 449 

interquartile ranges, while whiskers indicate extreme values and diamonds indicate outliers. 450 

 451 

We found that a model including all conditions outperformed a null model with only an intercept 452 

(FullLogLik = -1021, NullLogLik = -1046.83, χ2 = 51.57, df = 2, pBonf = 6.1e-12): MB was reported significantly 453 

more frequently in Low Arousal compared to Baseline (Marginal Mean= -.79, SE = .14, CL = [-1.16,-.43], 454 

pFDR = 1.8e-08) and to High Arousal (Marginal Mean = -.97, SE =.15, CL = [-1.35,-.59], pFDR = 7.9e-11) 455 

(Fig. 3a). However, MB reports during Baseline and High Arousal were comparable (Marginal Mean = .17, 456 

SE =.15, CL = [-.21,.56], pFDR = 2.4e-01). A visual inspection of the individual marginal means showed 457 

that this effect was consistent across participants and was not driven by extreme cases (Fig. 3b-d). 458 

 459 

 460 
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 461 

 462 

 463 

 464 

 465 

 466 

 467 

Figure 3. The frequency of mental state reports altered across the three arousal conditions. a) Mind-blanking (MB) report 468 

probability increased in Low Arousal (after sleep deprivation) compared to High Arousal (after intense exercise) and Baseline. 469 

Pointplot error bars indicate 95% confidence intervals. Points indicate individual subject report probabilities. b-d) Barplots 470 

indicate single-subject marginal means, comparing MB reports across arousal conditions. Compared to Baseline, there was no 471 

significant change during High Arousal (b). However, there was a visible trend favoring an increased probability of MB 472 

reports in sleep deprivation compared to baseline and High Arousal, signifying that the effect was present in most participants 473 

(c-d).  474 

 475 

Additionally, generalized estimating equations (GEE) showed a significant interaction for MW 476 

between Low Arousal - Baseline (beta = 6, SE = 1.5, CL = [ 3.06, 8.94], pFDR = 6.4e-05) and Low - High 477 

Arousal (beta = 8.23, SE =1.6, CL = [5.1, 11.36], pFDR = 2.6e-07). We also found significant interactions in 478 

SENS reports, such that SENS tended to be higher in Baseline compared to High (SENS Baseline - SENS 479 

High: beta = 2.54, SE = .81, CL = [ .96, 4.12], pFDR = 1.7e-3) and Low Arousal (SENS Baseline - SENS Low: 480 

beta = 2.46, SE = .77, CL = [.96, 3.97], pFDR = 1.3e-3). It is of note that this analysis yielded no significant 481 

results for MB, but the overall trend of the beta estimates was consistent with our positive results of the 482 

logit model above (Supplementary Fig. S3). 483 

 484 

MB was characterized by higher reaction times. 485 

There was a main effect of arousal conditions, with reports during Baseline being reported the fastest 486 

and during Low Arousal the slowest (Fig. 4a). Also, there was a main effect of mental states, with MW 487 
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reports being reported the fastest and MB reports the slowest (Fig. 4b). A significant interaction between 488 

MB and arousal showed that MB was reported the slowest in High Arousal. A significant interaction 489 

between MW and arousal showed that MW was reported the slowest in Low Arousal. A model including 490 

both arousal and reaction times outperformed simplified models including only null or main effect terms 491 

(FullLogLik = 2889.76, χ2 = 47.1, df = 4, pBonf = 1.5e-09; Fig. 4c). For a detailed overview of main effects and 492 

interactions, see Supplementary Table S3.  493 

 494 

 495 

 496 

 497 

 498 

 499 

\ 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

Figure 4. Mental states had different report times depending on arousal conditions. a) Reaction times at Baseline arousal were 509 

reported the fastest, followed by High (after exercise) and Low Arousal (after sleep deprivation), collapsed across all mental 510 

states. Pointplots show individual subject estimates. Boxplots show medians and interquartile ranges, while whiskers show 511 

extreme values. b) Mind-wandering (MW) was reported the fastest, followed by Sensations (SENS) and mind-blanking (MB), 512 

collapsed across all arousal conditions. Pointplots show individual subject estimates. Boxplots show medians and interquartile 513 

ranges, while whiskers show extreme values. c) Interaction between arousal condition and mental state report times: MW was 514 
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reported the slowest in Low Arousal compared to Baseline and High, while MB was reported the slowest in High Arousal 515 

compared to Baseline and Low. 516 

 517 

Transition probabilities showed reduced probability to transition to MW in Low arousal. 518 

Markov transition probabilities indicated significant differences only between High and Low 519 

Arousal conditions (Fig. 5), such that MW was more likely to be followed by MB (t = 3.26, CI = [.03,.15], 520 

pFDR= 9.7e-03, Cohen’s D = .74). Also in Low Arousal, both MW (t = -3.79, CI = [ -.31, -.9], pFDR = 7.6e-521 

03, Cohen’s D = -.86) and SENS (t = -3.43, CI = [ .37, -. 09], pFDR= 9.5e-03, Cohen’s D = -.77) were less 522 

likely to be followed by MW (Fig. 5; Supplementary Fig. S4). 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

Figure 5. After sleep deprivation (Low Arousal), participants were more likely to transition from mind-wandering (MW) to 532 

mind-blanking (MB) compared to the condition of physical exercise (High Arousal). Additionally, participants were less likely 533 

to transition to MW. Arrows indicate the direction of the mental state transition. Bold font indicates statistical significance 534 

(FDR corrected). 535 

 536 

Exploratory Analysis 1: MB frequency did not correlate with SLEEP frequency. 537 

As we wanted to avoid participants confounding MB and SLEEP reports, we opted for a paradigm 538 

that allowed participants to report both. Spearman correlations on each condition examined whether these 539 

two states were correlated. Across all mental states were comparable (Baseline: r = .13, p = 5.3e-01, High 540 

Arousal: r = .31, p = 1.3e-01, Low Arousal: r =-.05, p = 8.2e-01) (Supplementary Fig. S5). To strengthen 541 
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the claim that MB and SLEEP reports do not covary, we additionally ran separate equivalence tests on each 542 

correlation. No test was able to reject an equivalence claim (Baseline: z = -.34, p = 3.7e-01, High Arousal: 543 

z = .54, p = 7e-01, Low Arousal: z = .72, p = 2.3e-01). Therefore, these results remain indeterminate. 544 

 545 

Exploratory Analysis 2: High Arousal MB reports increased at the start, but not the end, of the experience-546 

sampling session. 547 

While we found that MB reports were more frequent in Low Arousal, we did not find any significant 548 

effect of High Arousal. In our original hypothesis (Supplementary Table S1), we registered as a potential 549 

alternative explanation for the absence of an effect that high arousal, as elicited by high-intensity exercise, 550 

might not last for the full session, and our session would represent a gradual return to Baseline Arousal. To 551 

test for potential effects of more frequent MB reports only at the start of the experience-sampling we split 552 

the High Arousal session in two parts and compared the count of MB reports across the start and the end of 553 

the experiment. Using a chi-squared test we found a significant effect, with MB reports being more frequent 554 

(divergence = 4.08, p = 3.2e-02) during the first half of the High Arousal condition compared to the second 555 

half (MBstart = 93, MBend = 66). We additionally attempted to validate this hypothesis by splitting the session 556 

into 4 and 6 discrete segments of 10 and 7 trials each and replicated the same analysis. However, this 557 

analysis did not reach significance. Finally, to provide further evidence for reduced occurrences of MB 558 

across time, we considered only the first and last 10 trials. We found a significant effect of more frequent 559 

MB occurrences (divergence = 7.39, p = 6.6e-03), with the first 10 trials of the High Arousal condition 560 

inducing more MB compared to the second half (MBstart = 51, MBend = 27). 561 

 562 

Classification of MB reports was outperformed by classification containing both BRAIN-BODY markers. 563 

We evaluated the capacity to classify MB reports from mental states with content (MW, SENS) 564 

based on 26 BRAIN (EEG) and 31 BODY features (12 ECG, 4 EDA, 8 RSP, 7 EYE), spanning time, 565 

frequency, information, and connectivity domains for each mental state report. In our original report, we 566 

registered that these features would be estimated across the 110s pre-probe window, with bad epochs being 567 
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dropped. However, across an 110s epoch, even a nonlinearity of 1s would result in epoch removal, leaving 568 

a total clean sample of 25 / 78 sessions (29.4%), and a total of 1060/3120 (33.3%) clean epochs. Therefore, 569 

to preserve datapoints and data quality, and minimize data discarding due to brief non-linearities, we opted 570 

for an extra step in bad epoch removal. After the initial epoch definition of 110s, we followed it up by 571 

partitioning that epoch into 5s sub-epochs, resulting in 22 sub-epochs per epoch. We then proceeded to do 572 

bad epoch removal and EEG marker estimation on those sub-epochs. If an epoch consisted of more than 573 

50% bad sub-epochs, it was discarded. Then, we averaged across within each epoch, resulting in no lost 574 

sessions, and a total of 2734 / 3120 (87.6%) total sample size. 575 

Having a final 2734 reports x 57 features matrix per report, we trained multiple classifiers on the 576 

total dataset, to examine whether a specific brain-body profile would outperform chance level classification 577 

of MB reports (Table 1). 578 

 579 

Due to the unbalanced nature of our dataset, we evaluated classifier performance based on balanced 580 

accuracy, as it avoids inflated performance on unbalanced datasets. Overall, we found that a balanced 581 

random forest (a random forest that undersamples the majority class in each bootstrap to equate class count) 582 

Table 1. A balanced random forest classifier outperformed all classifiers when compared across balanced accuracy. Cells indicate mean and 
95% CI. 

Examined Classifier Recall Precision F1 ROC AUC Balanced Accuracy 
Known subjects Balanced RF .61, [.6, .63] .26, [.26, .27] .37, [.36, .37] .71, [.7, .72] .66, [.65, .67] 

 SVM .28, [.26, .3] .29, [.28, .31] .28, [.27, .3] .63, [.62, .64] .58, [.58, .59] 
 ET .16, [.15, .17] .64, [.6, .67] .26, [.24, .27] .72, [.71, .73] .57, [.57, .58] 
 RF .14, [.13, .15] .61, [.57, .64] .22, [.21, .24] .7, [.69, .71] .56, [.56, .57] 
 IF .15, [.14, .16] .21, [.19, .22] .17, [.16, .18] .53, [.52, .53] .53, [.52, .53] 
 OC SVM .91, [.89, .93] .15, [.15, .15] .26, [.25, .26] .52, [.51, .52] .52, [.51, .52] 
 DUMMY .14, [.13, .15] .15, [.14, .15] .14, [.13, .15] .5, [.5, .51] .5, [.49, .51] 
       

Unknown subjects IF .25, [.21, .29] .18, [.16, .2] .2, [.18, .22] .53, [.52, .54] .53, [.52, .54] 
 Balanced RF .37, [.32, .42] .16, [.14, .18] .21, [.18, .23] .51, [.49, .53] .51, [.5, .53] 
 RF .04, [.03, .05] .27, [.21, .34] .06, [.05, .08] .53, [.51, .54] .51, [.51, .51] 
 ET .03, [.02, .03] .34, [.26, .43] .05, [.04, .06] .51, [.5, .53] .51, [.5, .51] 
 DUMMY .15, [.14, .17] .15, [.13, .17] .15, [.14, .16] .5, [.49, .5] .5, [.5, .51] 
 OC SVM .69, [.61, .77] .15, [.13, .16] .23, [.21, .24] .5, [.48, .52] .5, [.48, .52] 
 SVM .2, [.18, .22] .14, [.13, .16] .16, [.14, .17] .48, [.47, .5] .49, [.48, .5] 

RF = Random Forest; SVM = Support Vector Machine; ET = Extreme Trees; IF = Isolation Forest; OC SVM = One-Class Support Vector Machine  
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has above-chance performance and outperforms all other examined classifiers (Fig. 6a). We additionally 583 

examined whether we could predict unknown subjects, by leaving a subset of subjects out on each iteration. 584 

Due to the high degree of per-fold variance, we do not consider any classifier as meaningfully performing 585 

above chance level (Fig. 6b). 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

Figure 6. Classification performance was above chance level when mind-blanking (MB) reports were pooled across 596 

subjects, but not after training on a subset of participants and classifying the remaining subset. a) A balanced random forest 597 

classifier provided the highest classification performance across all examined classifiers including known subjects. b) An 598 

isolation forest classifier provided the highest classification performance across all examined classifiers on unknown samples. 599 

However, due to the high variance, we could not consider it meaningful. Individual points indicate performance on the folds of 600 

the repeated cross-validation. Results are ordered based on descending order of performance. Chance level performance is 601 

indicated by the Dummy classifier. RF = random forest; SVM = support vector machine; ET = extreme trees; IF = isolation 602 

forest; OC SVM = one-class support vector machine.  603 

 604 

Having established that MB reports can be predicted from known subjects, we then examined 605 

whether a brain-body data pattern would outperform classifiers trained solely on either BRAIN or BODY 606 

features. To this end, we fit and optimized a separate balanced random forest classifier on discrete feature 607 

combinations of our dataset. For a full report of the performance on different features, see Table 2. 608 

 609 
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 610 

Overall, we found that a classifier trained on both BRAIN and BODY markers outperformed classifiers 611 

trained solely on BRAIN or BODY features across all our performance metrics (Fig. 7a and Table 2). For 612 

feature importance, we calculated SHAP values for each feature in our dataset. SHAP values estimate the 613 

marginal contribution of each feature, averaged across every potential feature combination. In this manner, 614 

each value represents how much this feature contributes, after controlling for the impact of other features 615 

on this feature's importance. We found that the model relied mostly on EEG, EYE and ECG to discriminate 616 

MB reports when pooling MB occurrences across all three conditions. (Fig. 7b). 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

Figure 7. a) A balanced random forest classifier trained on a combination of BRAIN and BODY features 626 

outperformed classifiers trained solely on BRAIN or BODY features when evaluated with balanced accuracy. Individual points 627 

indicate performance on the folds of the repeated cross-validation. b) Subset of the 10 features with the highest mean of the 628 

absolute SHAP values obtained from the balanced random forest classifier. 629 

 630 

Table 2. A classifier trained on a combination of BRAIN and BODY features outperformed classifiers trained solely on BRAIN 
or BODY features, when evaluated with balanced accuracy. Cells indicate mean and 95% CI. 

Classifier Recall Precision F1 ROC AUC Balanced Accuracy 
BRAIN + BODY .61, [.6, .63] .26, [.26, .27] .37, [.36, .37] .71, [.7, .72] .66, [.65, .67] 

BRAIN .58, [.56, .6] .25, [.25, .26] .35, [.34, .36] .69, [.68, .7] .64, [.64, .65] 
BODY .6, [.58, .61] .22, [.21, .22] .32, [.31, .32] .67, [.66, .68] .61, [.61, .62] 
EYE .57, [.55, .58] .22, [.21, .22] .31, [.3, .32] .64, [.63, .65] .61, [.6, .62] 
ECG .56, [.54, .57] .18, [.17, .18] .27, [.26, .28] .59, [.58, .6] .56, [.56, .57] 
EDA .6, [.57, .63] .17, [.16, .17] .26, [.25, .26] .57, [.56, .58] .54, [.54, .55] 
RSP .54, [.52, .55] .15, [.15, .16] .24, [.23, .25] .53, [.52, .54] .52, [.51, .53] 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.26.586648doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.26.586648
http://creativecommons.org/licenses/by/4.0/


 27 

Exploratory analysis 3: Feature importance altered across arousal conditions.  631 

 The decoding analysis in known samples showed that we can predict MB instances from the 632 

combination of brain-body markers with adequate accuracy when MB instances were aggregated across 633 

different arousal conditions. We were further interested in whether this classification was achieved based 634 

on a universal mechanism, or whether we could detect arousal-dependent brain-body configurations that 635 

predict MB. To this end, we trained a balanced random forest classifier solely on data acquired from 636 

Baseline, from High, and from Low Arousal. We found that Baseline and Low Arousal had similar 637 

performance levels (Baseline: .66 [.65,.68], Low Arousal .65 [.63,.66], while High Arousal classification 638 

performed worse (High Arousal: .6 [.59,.62] (Supplementary Table S4). Examining the SHAP values for 639 

each arousal state, we can see that the models rely on distinct modalities. During Baseline, model relied on 640 

markers from the frequency and connectivity domain of EEG, as well as frequency markers of ECG and 641 

eye openness (Fig. 8a). During Low Arousal, MB classification was obtained using the delta band power, 642 

by far the most dominant marker (Fig. 8b). Finally, in High Arousal, their model did not rely on a single 643 

feature, rather in a combination of EEG connectivity, eye openness and the EDA sympathetic component 644 

(Fig. 8c). 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

Figure 8. Ranking of features by mean absolute SHAP value extracted from the balanced random forest classifier 656 

varied across different arousal conditions. a) Magnitude of SHAP values for a balanced random forest classifier trained on 657 

Baseline Arousal MB reports. The model relies mostly on features from the spectral domain of the EEG, the frequency domain 658 
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of ECG, and eye openness. b) Magnitude for SHAP values for a classifier trained on Low Arousal MB reports. The model 659 

mostly uses spectral power in the delta band. c) Magnitude for SHAP values for a classifier trained on High Arousal MB 660 

reports. The model relies mostly on features from the connectivity in EEG, as well as EDA and eye openness. 661 

 662 

Exploratory analysis 4: Feature importance altered based on the pre-probe analysis window. 663 

 A potential caveat of utilizing the full pre-probe period of 110s before a report is that we might 664 

capture multiple mental states, and the actual statistical regularities might be weakened when averaged 665 

across. With this consideration, we examined whether we could improve classification performance when 666 

classifying MB from the last 10s before a report. We defined a secondary brain-body data matrix, with body 667 

features that could be estimated from 10s of body activity. We observed a marginal decline in performance 668 

in all feature combinations, with the largest decrease in performance seen in the classifier trained solely in 669 

EYE data (Supplementary Table S5). An examination of feature importance showed that the beta, delta, 670 

and theta bands remained the most important EEG features, but there was a reduction in the importance of 671 

the EYE features and an increase in the importance of EDA (Supplementary Fig. S6). 672 

 673 

Discussion  674 

We used experience-sampling combined with EEG and peripheral physiological recordings under 675 

different autonomic arousal conditions to determine whether MB reports in neurotypical individuals were 676 

supported by distinct brain-body configurations compared to mental states with reportable content. Overall, 677 

our results show that MB is a mental state that becomes more prevalent in low and partially in high arousal 678 

states, and that MB is driven by both brain and body processes, providing evidence for an embodied account 679 

of MB. 680 

Behaviorally, we found that MB was reported at significantly lower rates compared to sensory 681 

experiences or MW, irrespective of the arousal condition. This finding is in line with past research showing 682 

that MB rates vary between 5-10% of total probe instances, across both uninterrupted thinking12 and task 683 

engagement11. We also show that sleep deprivation significantly increases the frequency of MB 684 
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occurrences. Sleep deprivation induces a low arousal state during which cognitive performance declines67, 685 

metabolic and physiological processes change68, and unique neuronal markers, such slow-wave activity, 686 

emerge69. After sleep deprivation, participants also tend to perform worse in sustained attention tasks70, 687 

with results suggesting a true effect of sleep deprivation on more “misses” (no response when necessary) 688 

compared to “false alarms” (response when unnecessary)71, a finding that was recently shown as a 689 

behavioral correlate of MB11. Additionally, sleep deprivation and mounting sleep pressure were positively 690 

correlated with more MW instances72,73, suggesting an overall mode shift from task-engagement to MW74. 691 

Our results challenge these past findings by showing that participants were more likely to blank than mind 692 

wander after sleep deprivation. We also show that MW was in fact more likely to decrease after sleep 693 

deprivation. This is further supported by the results of the transition matrix analysis, where MW reports 694 

were less likely to be followed by another MW report, and more likely to be followed by MB. Such 695 

discrepancies in the reportability of MW after sleep deprivation could be possibly explained by the explicit 696 

inclusion of MB as a reportable mental state in the experience-sampling that our design opted for. In other 697 

words, it might be that the observed MW occurrence increase after sleep deprivation could be accounted 698 

for by MB reports once participants had the chance to, discriminated between these two mental states in a 699 

more fine-grained way. 700 

In terms of high arousal induced by high-intensity exercise, our analysis did not reveal any 701 

significant effects on MB occurrences. As per the provided registered protocol alternative explanation 702 

(Supplementary Table 1), we hypothesized that this arousal manipulation might not have been overall 703 

effective as it could not produce effects which would last across the whole experience-sampling session. 704 

To test whether MB frequency reports would differ between the beginning and at the end of the session, we 705 

split the dataset into two parts. When split, we indeed found a significant difference between the frequency 706 

of MB reports. This result was replicated when considering only the first and last 10 trials per subject, 707 

which maximized the distance between initial and final physiological arousal within the session. However, 708 

we were not able to find any differences when the data were split into smaller bins. Together, we consider 709 
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that these results provide partial evidence for our registered hypothesis, showing that residual high arousal 710 

effects after intense exercise can increase the frequency of MB reports.  711 

 In addition to the frequency of mental states across arousal conditions, we also examined whether 712 

report times differ across arousal conditions and mental states. In general, reports in low arousal tended to 713 

be the slowest, consistent with a wide range of attention tasks that show slower report times in sleep 714 

deprivation compared to baseline arousal75. We consider these findings as additional evidence that the 715 

arousal manipulation was effective in that it lowered overall vigilance levels. We also observed a main 716 

effect of mental states, such that MB tended to be reported significantly slower compared to MW and SENS. 717 

Contrary to our current results, we recently found that MB was reported faster when compared to other 718 

mental states, when content had to be evaluated12. This apparent mismatch in results can be explained when 719 

considering that MB can be a state devoid of content, and therefore, there is the binary consideration of 720 

“yes/no” when evaluating thought content, which might be a relatively fast decision. This can be different, 721 

for example, from evaluation of content-full mental states, which demand a sequential evaluation of both 722 

content presence (“yes/no”) and content evaluation (“what is the content about?”). This way, the difference 723 

in results can be explained by the imposition of an additional cognitive evaluation. Overall, we suggest that 724 

these results might reflect a gradient of vigilance, with participants being the most alert at baseline arousal, 725 

and progressively declining during high and low arousal conditions, as well as more vigilant when reporting 726 

mental states with content compared to MB. Of note, we observed two interesting interactions between 727 

mental states and arousal conditions. MW tended to be reported slower in low arousal compared to baseline 728 

and high, which is consistent of our interpretation of reaction times as marking vigilant states. However, as 729 

we also observed that MB tended to be the slowest in high arousal, we speculate that this might be 730 

preliminary evidence arousal modulates how engaged participants are with their current mental states. In 731 

this sense, exercise fatigue can lead to deeper levels of MB that take longer to recover when probed for a 732 

report. 733 

A final explanatory analysis revolved around the relationship between sleep and MB. We recently 734 

posited that MB is a distinct mental state characterized by a unique phenomenological profile of no 735 
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content76, and unique neuronal markers, characterized by high cortical integration and low cortical 736 

segregation12. This neuronal configuration is atypical to wakefulness77, and is more closely reminiscent of 737 

brain configurations during deep sleep78. In conjunction with the presence of slow wave intrusions during 738 

wakefulness as a marker of MB reports11, a classic marker of NREM sleep, an emerging issue is whether 739 

MB is a misrepresented instance of sleep. This issue is further complicated by the postulation that in MB 740 

there is no content76, and thus does not functionally represent a wakeful state where people are able to 741 

recover content. To avoid this pitfall, we introduced Sleep as a potential response during experience-742 

sampling. We found that people discretely reported MB and sleep, providing evidence that when provided 743 

with such options, people can differentiate these two experiences. Additionally, we did not find that MB 744 

and sleep tended to covary. To strengthen this claim, we ran equivalence tests for each correlation across 745 

arousal conditions. However, no test showed a positive result for equivalence. Therefore, these results 746 

remain indeterminate, with a trend for no relationship between MB and sleep.  747 

Having established that MB occurrence varied across different physiological arousal conditions, we 748 

then examined whether MB could be decoded by brain and body markers. With the aim of showing single 749 

trial prediction, we trained different models on EEG and physiological signals markers from time, spectral, 750 

complexity and connectivity domains. Overall, we were able to achieve above-chance-level classification, 751 

showing that there exist unique brain-body patterns that can discriminate MB reports from mental states 752 

with content. However, we were not able to show above-chance-level classification when training 753 

classifiers on unknown subjects. Therefore, our results are not generalizable to novel population due to the 754 

high amount of variance between subjects. Of importance is the result that a combination of EEG and 755 

physiological markers outperformed both EEG and physiological markers. This indicates that information 756 

about MB extracted from the body is partially independent from the EEG features, and that body markers 757 

cannot be derived solely from EEG. Feature importance ranking derived from the decoding model indicates 758 

that the power spectrum of the EEG signal, as well as features from blinking behavior and ECG, are useful 759 

predictors of MB. Importantly, all classifiers trained on body markers had above chance performance with 760 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.26.586648doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.26.586648
http://creativecommons.org/licenses/by/4.0/


 32 

variant degree of variability, with the highest performing being the EYE (eye openness) and the ECG (heart-761 

rate variability), providing evidence that MB can be decoded solely from bodily signals.  762 

To further validate our protocol, we ran two exploratory analyses, with the aim to examine whether 763 

classification performance varies based on the analyzed pre-probe window, and whether feature importance 764 

alters across arousal conditions (For a full Discussion, see Supplementary Discussion on Methodology). 765 

Overall, when examining a classifier trained on a brief 10s window before MB reports, we found 766 

comparable performance compared to the full 110s classifier. What was interesting was that while EEG 767 

performance remained the same, performance on classifiers trained solely on body features decreased. As 768 

brain-physiology coupling occurs at varying time-delays across cardiac79 and respiratory domains80, we 769 

interpret these results as evidence that bodily contributions on MB are based on slow, oscillatory processes 770 

that might not be captured from examining short pre-probe periods. At the same time, our classification 771 

analysis on separate arousal conditions showed distinct brain-body configurations that can predict MB 772 

reports. As our decoding approach does not permit any inference of the directionality effect, or 773 

decomposing interactions within and across physiology modalities, at this stage we claim that our results 774 

point to discrete physiological pathways that elicit MB reports. Overall, we show that our enhanced 775 

classification is retained across different analysis windows, and across different arousal conditions. 776 

Similarly enhanced classification when considering a brain-heart matrix compared to solely brain 777 

markers was also shown for patients with disorders of consciousness, where the inclusion of cardiac features 778 

outperformed classification based solely on EEG markers81. To our knowledge, our results are the first to 779 

extend multivariate decoding past the brain-heart axis and consider the inclusion of multiple unique bodily 780 

afferent sources in classifying mental states. The overall success of the brain-body decoding paradigm in 781 

classifying consciousness levels and mental states provides evidence that bodily information is not 782 

redundant and is not necessarily fully represented within brain dynamics. Instead, an embodied approach, 783 

stressing bidirectional information routes between brain and body is able to provide better predictive power, 784 

and assists in more comprehensive generative, computational models of experience34,82.  785 
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A neurobiological explanation of our results comes from an integrative model about content, task 786 

engagement and arousal which suggests that the relationship between thought and arousal can be 787 

conceptualized as an inverted u-curve. This means that an optimal arousal level modeled by LC-NE firings 788 

is necessary to actively engage and control our thoughts, either during task engagement or MW83. This 789 

stance treats thought as an active task, where engagement is necessary for clear content and control of 790 

thought dynamics. As arousal tapers off to non-optimal levels of the inverted u-curve, we experience 791 

concurrent, opposing thoughts that serve exploratory purposes for optimal performance, such as exploring 792 

different strategies. This necessitates flexibility and malleability of content. We here suggest that our results 793 

supplement this model by proving an account of the extremities of the optimal u-curve. As the model 794 

suggests degradation of thought clarity when we move closer to arousal extremities, we consider MB 795 

reports as instances where no content can be clear or present, extending this unifying framework to the 796 

entrire arousal u-curve. Neurophysiologically, this model has translated to investigations of pupil dilation, 797 

an index of LC-NE firing, as a function of mental state and task-engagement with pupil size yielding both 798 

positive 26,84 and null results11 in discriminating on-task vs off-task mental states, as well as contrasting MB 799 

and MW. Part of the ascending arousal network, the LC modulates cardiac, galvanic, respiratory and 800 

pupillary activity 28,85. In addition, the LC innervates projections responsible for eyelid openness86. The 801 

combinatorial high performance of different body markers in classifying MB reports, and the evidence that 802 

altered levels of arousal increase MB occurrences provide further support of the modulatory role of the 803 

ascending arousal system in mental states and thought reportability. 804 

 From a theoretic perspective, our study challenges the conception that brain information is uniquely 805 

suitable to understand thought reportability and provides support for an embodied account of the mind. 806 

Embodiment moves the seat of mental events away from the brain and reformulates cognition as resulting 807 

from brain-body interactions. An extensive literature has shown how catalogued cardiac, respiratory, gut 808 

and pupillary effects on perception30, action87, metacognition31 and consciousness81, while the collective 809 

interplay of peripheral systems has discriminatory power for clinical88 and consciousness classification89. 810 

We show here that within embodiment, the body is not only facilitatory, but also might impede access to 811 
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our mental lives. Under specific brain-body configurations, we are not able to clearly formulate mental 812 

content. 813 

Some limitations pertain to our study. First, the nature of experience-sampling discretizes the 814 

continuous nature of ongoing thinking. As there is no consensus to how long a mental state might last, or 815 

whether all mental states last the same length, results might average across different mental states. While 816 

we attempted to circumvent this problem by analyzing different pre-probe windows, it remains unclear 817 

whether all mental states last the same, and what is their actual duration. Secondly, the post-exercise setup 818 

might be suboptimal is examining effects of high arousal on ongoing cognition. Neuronal and 819 

electrophysiological recordings have shown that the duration of the effects of exercise on ongoing brain 820 

and physiological activity45–47 is highly variant. In addition, it is unclear whether brain and body recover to 821 

baseline states at same rates, potentially confounding post-exercise importance of cortical and physiological 822 

markers in cognition. Experience-sampling with online probes during exercise could overcome this 823 

challenge.  824 

In conclusion, our study suggests that MB is an arousal-modulated mental state, with a unique 825 

cortical and physiological profile. We think that our results pave a new paradigm for an embodied account 826 

of mental states, where the phenomenology of our mental lives is expressed based on both our body and 827 

our brain state. At the same time, our results challenge the neurocentric approach to mental state research, 828 

putting emphasis on the constant brain-body interactions that shape our cognition. As MB research 829 

continues to evolve, we consider our findings elaborative for clinical and experimental accounts of the 830 

mind, where we move towards a complex and dynamic conception of our mind. 831 

 832 

Code Availability 833 

All codes to replicate the power analysis, the experience-sampling paradigm and the present analysis 834 

can be found at https://gitlab.uliege.be/Paradeisios.Boulakis/mind_blanking_arousal. An archived version 835 

of the code at the time of submission can be found at https://doi.org/10.58119/ULG/174Q6G. 836 

 837 
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Data Availability  838 

The aggregated raw data in a BIDS format, the trained machine-learning models, experimental and 839 

analysis logs, and result dataframes can be found at https://doi.org/10.58119/ULG/174Q6G. 840 

 841 

Protocol Registration 842 

The stage 1 accepted-in-principle protocol can be found at https://osf.io/sh2ye.  843 
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